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The stochastic star formation model of galactic evolution can be cast as a 
problem of directed percolation, the time dimension being that along which the 
directed bonds exist. We study various aspects of this percolation, those of 
general interest for the percolation phase transition and those of particular 
importance for the astrophysical application. Both analytical calculations and 
computer simulations are provided and the results compared. Among the 
properties are: value of the percolation threshold, critical indices, percolation 
probability (star density) near and away from the critical point, local density, 
cluster sizes, effects of rotation (for disk galaxy models) on the percolation 
threshold. Astrophysical consequences of some of these properties are discussed, 
in particular the way in which general phase transition behavior contributes to 
spiral arm morphology. We look at I (space) + 1 (time), 2 + I and "oo"+ 1 
dimensions, the 2 + 1 case being of interest for disk galaxies. 

KEY WORDS: Star formation-stochastic; percolation-directed; galactic 
evolution; stochastic process. 

1. I N T R O D U C T I O N  

T h e  p h e n o m e n o n  of p e r c o l a t i o n  has  app l i ca t ions  in  diverse  areas  a n d  has  
b e e n  ex tens ive ly  inves t iga ted  over  the  last  decade .  However ,  the  class of 
p e r c o l a t i o n  p r o b l e m s  where  o n e  or  m o r e  d i m e n s i o n s  is d i rec ted  has  re- 

ce ived  li t t le a t t en t ion .  I n  this p a p e r  we desc r ibe  a class of p r o b l e m s  h a v i n g  
one  d i rec ted  d i m e n s i o n ,  a n d  will invest igate ,  in  pa r t i cu la r ,  the cases of 

1 + 1, 2 +  1, a n d  " o o " + 1  d i me n s i o n s .  T h e  first n u m b e r  refers to the  
n o n d i r e c t e d  d i m e n s i o n s  a n d  the 1 fo l lowing  the  p lus  sign refers to the  single 
d i rec ted  d i m e n s i o n .  
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The impetus for considering this class of problems comes from an 
active area of astrophysics concerning the structure and evolution of 
galaxies. In a series of recent papers, O-4) it has been proposed that the 
main factor determining galactic evolution is the star-forming process and 
that the process that creates the major fraction of stars is stochastic 
self-propagating star formation. In this mechanism stars are created under 
the direct influence of other stars. Massive stars (masses ~> 5 solar masses) 
have short and violent life cycles. They will completely evolve in periods of 
the order of ten million years and end their lives as supernovas. By means 
of the shock wave created by the supernova (or even by the high-energy 
densities radiated during the star's lifetime) the interstellar gas can be 
compressed to densities high enough to allow gravity to finish the collapse 
into stars. If at least one of these new stars is a high-mass star the process 
can repeat itself, leading to the conversion of the primordial galactic gas 
into aggregates of stars. 

This process is equivalent to a percolation problem in which star 
formation percolates in both space and time. The existence of a bright, 
massive star at any given time is connected to that of stars at earlier or later 
times only. Time is the directed dimension in the problem. 

The main emphasis in the galactic problem has been on disk galaxies 
(e.g., spirals), since it is in these galaxies that active star formation is 
presently occurring. Groups of stars created by this process (open clusters 
and associations) are of the order of 50-200 pc (parsecs) in size, the same 
order as the thickness of disk galaxies (1 pc ~ 3.3 light years). Therefore, 
for the purposes of the stochastic self-propagating star formation mecha- 
nism the spatial structure of the disk is two dimensional. For this reason 
primary interest is in the (2 + 1)-dimensional system, although we will also 
discuss the simpler 1 + 1 and "oC' + 1 systems. 

This paper will concentrate on the properties of the underlying di- 
rected percolation process itself and we refer the reader elsewhere for the 
astronomical details (1-4) and for alternate theories of spiral arm forma- 
tion. (5) The emphasis is on the determination of the critical parameters of 
the directed percolation problem. We present both analytical results and 
computer simulations and find that the agreement between them is gener- 
ally quite good. We also compare our results to earlier work on directed 
percolation. In Section 2 we describe the lattice models that we use. In 
Sections 3, 4, and 5 we discuss " o C ' + l ,  1 + 1, and 2 +  1 dimensions, 
respectively. In Section 6, we summarize our results and conclusions. 

2. LATT ICE M O D E L  

To each point a = (i 1, i 2 . . . . .  in) on an n-dimensional lattice assign a 
variable o~ taking values 0 and 1. The system state, described by the set of 
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values of %, evolves stochastically in time in the following way: For each a 
define a set R n, the set of neighbors of a, whose definition in each case 
depends on lattice shape and dimension. Each neighbor fl of a for which 
a~ = 1 at time t has probability t7 of causing % on the following generation 
(time t + 1) to take the value 1. Formally, 

% ( t + l ) = l - -  1-I [1-An, f l , ta~(t)]  
fi ER~ 

where A~,B, t is, for each a, fl, and t, an independent random variable taking 
the value 1 with probability/7 and 0 with probability 1 - /7 .  The quantity 
An,~, t will at times be written A (a, fi, t) or A~r t. 

The significance of % is that when it takes the value 1, there is a star 
(or more realistically a cluster of newly formed stars) in the cell (or at the 
site) a. Under this circumstance we shall sometimes refer to the site a as 
being "alive." The value 1 for the variable Anr t represents the event that if 
there is a star at fl at time t, then there will be one at a at t + 1. 

Let O(t) be the average of % ( 0  over the lattice (at fixed t). For 
sufficiently small/7 0 = limt-,o~ o(t) is 0 for any initial conditions. Above a 
certain critical value/7 c this limit can be finite. Of interest is the value of/) C, 
the length distribution of (finite) clusters for/7 < Pc, the dependence of 0 on 
/7 for/7 >/7c, and the temporal length distribution of (necessarily finite) 
clusters for all/7 < 1 in the case of a finite lattice. 

When the random variable A~,B, t is 1 the sites a and fl are said to be 
connected between times t and t + 1. Dense infinite clusters will exist if and 
only if there are sites a, for some arbitrary t, such that if % ( 0  is 1, then 
o ( t ) ~ o  > 0. Hence/7c defined above is the percolation threshold. The 
asymptotic value of P for the initial condition %(0) - -1 ,  all a, is the 
percolation probability, the probability that a site is part of an infinite 
cluster. 

The systems of interest are as follows. 
A. Infinity-/Tlus-one dimensions. This is analogous to mean field theory 

in that all sites are connected to all other sites with an average probability 
/7 = x / N  where N is the number of sites. Hence R~ is the entire "lattice" (at 
a single t). Percolation is still directed since sites only connect to other sites 
at a later time. 

B. One-/Tlus-one-dimensional/Tercolation. a (site label) runs over a one- 
dimensional lattice of N sites with periodic boundary conditions (and 
critical values are defined for N--> oe). Calling the site label j  (instead of a), 
j = 1 . . . . .  N and the set Rj is just {j  - 1, j + 1 } (modulo N). 

C. Two-/Tlus-one-dimensional/Tercolation. In the stochastic galactic evo- 
lution model the galaxy is represented as a series of N concentric annuli, 
each divided into 6N cells, each cell being approximately square (and 
about 600 light years on a side). A cell in this model usually has six 
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contiguous neighbors so that the geometry of the array is essentially that of 
a triangular lattice. An important feature of disk galaxies is their roughly 
axially symmetric rotation, a rotation that is not rigid so that the galaxy 
experiences an appreciable amount of shear. This shear will cause the 
aggregates of stars created by stochastic star formation to be spread out 
into the characteristic spiral arms of large disk galaxies. 

In our analysis of the percolation process we consider only the two- 
dimensional triangular lattice; a = (i, j) ,  i, j = 1 . . . . .  N,  with periodic 
boundary conditions. The shear is introduced by sliding the rows of the 
lattice with respect to each other so as to simulate the shear produced by 
the nonuniform galactic rotation. In the computer models we use an 
equivalent rectangular lattice where the neighbors are defined as those cells 
having contiguous boundaries with the cell of interest. Neglecting those 
rare occurrences where the cell boundaries exactly line up, the number of 
neighbors in this lattice is six, as in the triangular lattice. 

With no shear the neighbors of a are the six nearest neighbors on the 
triangular lattice. With shear it is easiest to picture the sets R~ changing due 
to an active transformation on the lattice: rows i, i o ~< i <~ N all move to the 
right and the neighbors at subsequent times are the nearest neighbors in the 
new configuration. Several neighbor shifts can occur in one time step. As 
we will see in Section 5, the shear affects the values of the critical 
parameters. 

D. Three-plus-one dimensions. The case of three-plus-one dimensions is 
also of interest since it should be applicable to the case of elliptical 
galaxies. (4) We have, however, done only the most preliminary examination 
of this case and will not discuss it further in this paper. 

3. INFINITY-PLUS-ONE-DIMENSIONAL PERCOLATION 

We shall first do the mean field case as it is solvable and illustrates 
some of the techniques used in the other situations (similar models have 
been considered in population genetics(6)). 

The evolution law is 

N 

o , ( t+  1 t = 1 - I I  [ 1 -  .4,j, oAt)] (1) 
j = l  

Suppose at time t exactly n of the variables oi(t ) take the value 1. Then 
p(t) = n / N  and 

o~(t + 1)= I -  f l  ( 1 -  A~t ) (21 
j = l  
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The expectation of p(t + 1) is therefore 

= _ __ X ) N o ( t )  
(p( t+ 1)) 1 - ( 1  p ) " =  1 ( 1 - ~ _  (3) 

For large N this is (dropping the expectation symbol) 

o(t + 1) = 1 - e -x~176 (4) 

An equilibrium value of O must satisfy 

P = l - e - X ~  (5) 

O = 0 is always a solution, while for x > 1 there is a second solution so that 
the critical value is x~ -- 1. Moreover, for 0 < x - x~ << 1 

2(x -  1) 
p ~ x 2 (6) 

so that letting the critical exponent fl be defined by 

p = const(p - p~)~ (7) 

we have/3 = 1 in this case. Equation (4) also gives the decay and equilibra- 
tion properties for the expectation of p(t). 

Next we use a scaling argument to give x~ and to get the critical 
exponent associated with time correlations (cluster durations). We shall use 
single time step decimation. As defined above A (i, j, t) is 1 if site i is 
connected to site j between time steps t and t + 1 and 0 otherwise. Let 
B(i, j, t) be the random variable for two-step connection: B(i, j ,  t) is 1 if 
there is a path (i.e., with any intermediate site) from i at time t t o j  at time 
t + 2. Clearly, 

N 

1 - B ( i , j , t )=  1-I [1 - A ( i , k , t ) A ( k , j , t +  1)] (8) 
k = l  

Let the expectation of B be p', which is therefore the probability that a 
specific site at time t is connected to a specific site at t + 2. Taking the 
expectation of (8) yields 

1 - p ' =  (1 -f12)  u (9) 
or with p '  = x ' / N  [neglecting O(1/N 2) terms] 

x ' =  x 2 (10) 

The new process, taking time steps of length 2 with probability x ' /N ,  is 
exactly the same as the former aside from the change in probability. No 
correlations in connectivity have been introduced. Rescaling n times gives 
(with obvious notation) 

x (") = x 2n (11) 
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The fixed points are x - - 0 ,  l, and m an attractor, a repeller, and an 
attractor, respectively. Zero is the disconnected lattice, oe is the connected 
system. Equation (11) also gives the critical exponent ~ for the time 
correlation length. If any characteristic length can be associated with the 
system, for example, for x < x C -- 1 the average cluster size, then successive 
transformations cut this length in half. Suppose 

f (x)  = k ( x c -  x) -~ (12) 

describes the correlation length for x < x~ (for some constant k). Then 
under a single scale transformation 

k ( x c  - x ' ) - " =  = �89 = � 89  - x )  (13) 

For x near xc, xr - x ' ~ O x ' / 3 x ) ( x r  - x) = 2(xr - x) and it follows from 
(13) that u -- 1. Clearly what has been proved for ~ holds for any character- 
istic time scale in the system, for example, the length of clusters for x > x c 
which are not part of infinite clusters. 

The conclusions for f for x < 1 can be verified explicitly by a nonscal- 
ing argument. First we give a particular definition of f(x): 

= ~ tPx(t ) (14) 
t = 0  

where Px(t) is the probability of having a cluster of length t exactly. 
To calculate Px(t), define a(n,t)  to be the probability that exactly n 

sites are alive at time t [so that a(n, 0) = 8,0 ]. Since all sites are identical the 
system evolution is described by a transition matrix W(k,  j), the probability 
of going from j living sites to k living sites. Because we are interested in 
fixed j ,  k for N ~ m we can neglect the possibility that connections from 
two living sites at t hit the same site at t + 1 (for x > x~ there will be finite 
density and this effect is important). The probability of the givenj  live sites 
reaching a particular set of k sites is 

i x  k - - N  

The number of subsets of size k is N (k)- Hence 

k N - k  

- Y  - k!  , j , k  O (15) 

the second equality being the limiting form for N ~  m. The coefficients 
a(n, t) satisfy 

a(k , t  + 1) -- ~ W ( k , j ) a ( j , t )  
J 
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The quantity Px(t) is given by 

Px(t) = ~ W(O, j )a( j , t )  (16) 
j > 0  

The obvious fact that the average number of living sites should decrease by 
a factor of x on each time step is immediately verified 

(k) ,+,  =-- ka (k , t  + 1) = k! a( j , t )  
k=O j,k=O 

oo 

= x ~ ja( j ,  t) = x ( k ) ,  (17) 
j = 0  

For x close to 1, ~ becomes large and the growth of ~ might be 
expected to depend on only the largest eigenvalue of W. In fact, however, it 
depends on the largest eigenvalue of a truncation of W, for the following 
reason: W is a stochastic matrix; it has largest eigenvalue 1 with the 
obvious eigenVector a(n)= 6,,o, since n = 0 is an absorbing state. The 
truncated matrix W(k,  j) for k and j both (strictly) greater than 0 is not 
stochastic and it is its largest eigenvalue that fixes the lifetime for staying 
away from the 0 state (for a similar calculation see Newman and Schul- 
man(7)). Designate the truncation of W by W'. Let its largest eigenvalue be 

and the associated eigenvector u. Since all elements of W' are positive )~ is 
real positive and u unique (Frobenius theorem). The demonstration (17) 
was true for all vectors and in particular for u. Hence 

On the other hand, 

(n)t+l = x (n ) ,  = x~_~juj (18) 

(n) ,+ ,  = ~jWj~Uk= X~, ju j  (19) 

Comparing, we have 3, = x. As x--> 1 the large t behavior of a(n,t) 
determines ~ and successive application of W to a(n, 0) causes all but the 
eigenvector associated with ~ = x to drop out. Consequently, 

Px(t) = ~,, W(O, j ) a ( j , t ) - -  ~,e-JxXtuj = x t E u j e  -ix 
j > 0  

But we can also sum the identity 

XUg = k ( jx)k e-JXuj 
j =  l --Ky-. 

over k to get 

• uje -)x= 1 - x 
j = l  
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It follows that 

1 ~(t) = ~ ] t P x ( t ) ~ t x t ( 1  - x)  - 1 - x 

and the critical exponent is explicitly seen to be 1. 

(20) 

4. ONE-PLUS-ONE-DIMENSIONAL PERCOLATION 

The dynamical equation is 

o i ( t +  1 )=  1 -  I I  I 1 - A i j t ~  (21) 
j ~ i + _ l  

where i + 1 is understood to mean modulo N, with N the total number of 
sites. The simplest mean field theory of the evolution law (21) is gotten by 
taking expectation values and ignoring correlations. Writing p(t) = (o i ( t ) )  
for any i, we have 

p(t + 1) = 1 - [ 1  - pp( t ) ]  2 (22) 

where the expectation of all the A variables is p. The equilibrium equation 
is [0(t) = 01 

p [ ( p - � 8 9 1 8 9  = 0  (23) 

Thus p = 0 is always a solution and for p > �89 there is a positive solution p. 
Hence Pc = �89 and fl [cf. Eq. (7)] is 1. 

We can improve on Eq. (22) by using a cumulant expansion. (8) The 
expectation of Eq. (21) is now written 

p(t + 1 )=  1 - [ 1 - p p ( t ) ]  2 -  ( [ 1 - p o i + , ( t ) ] E 1 - p o i _ l ( t ) ] ) c  (24) 

with 
( UV)c  = ( V V )  - ( U ) ( V )  

for random variables U and V. Equation (24) simplifies to 

p(t + 1) = 2pp(t)  - -p2p( t )2 - -pZ(Oi+l ( t )o i_ l ( t ) ) c  (25) 

The cumulant in (25) can be expressed in terms of expectation values and 
higher order cumulants at time t -  1. We cut off this potentially infinite 
regression in the calculation of (o;+ l(t)oi_ l(t))c by ignoring all second- or 
higher-order cumulants at time t - 1. Thus 

(Oi+ l(t)oi-l(t))c 
= ( [ [ 3 0 i ( t  - -  1) + p a i + 2 ( t -  1) - p 2 0 i ( t  - 1)oi+2(t - 1)] 

• [ p o i _ 2 ( t -  1 ) + p o i ( t -  1 ) - p 2 0 i _ 2 ( t -  1 ) o i ( t -  1)])c  

= 9(1 -  )p2(1 _p )2 (26) 
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with } = o(t - 1). The cumulant in (26) is nonzero because terms o 7 ( =  oi) 
appear in the product. In equilibrium p(t)=--P so that (26) and (25) 
combined yield 

(1 - p)(1 _ p p ) 2 =  (2p - 1 ) /p  4 (27) 

where the solution p = 0 has been factored out. Equation (27) will begin to 
have a nonnegative solution for p when 

p4 _ 2e  + 1 = 0 (28)  

so that 

Pc ~ 0.5437 (29) 

the root of (28). It is also clear that we still have/3 = 1. 
The critical exponent v [cf. Eq. (12)] can also be gotten quite simply. 

Go back to Eq. (22) and assume p is slightly below_pc(= 1/2) and that 

p( t ) .~p( to)e  -( ' - 'o) /~ 

It follows that 

~ 1 
2(p~ - p )  (30) 

so that v = 1. This conclusion is unchanged when second-order cumulants 
are included. 

Scale  Transformat ion 

We next use renormalization group methods for the critical behavior 
of this percolation problem. Specifically, we shall rescale time by a factor of 
2 by "decimating" a single time step. With reference to Fig. 1, we want the 
probability that there is a connected path from A to F given that there is 
probability p for any of the (possible) connections A-B,  A-D,  C-F .  The 
question as just phrased is in fact too restrictive. More extensive possibili- 
ties for bonds are considered and we begin by assuming that not only is 

t=2 E F G H 

t=l ""~,/ "'" / "- / 
B",, C , "~D I j 

t=O ", -S " j  
A 

I J 
/ /  

/ /  
/ / /  

/ /  

Fig. 1. Scale transformation by time step decimation. Labels A, B, etc. distinguish both 
position and time. 
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(A (i, i +_ 1, t)) nonzero (and equal to p) but also (A (i, i, t)) =-- q and (A (i, 
i + 2, t)) ~ r need not be zero. In Fig. 1 this implies, for example, that A 
and C are connected with probability q. Now let B be the random variable 
for connections across two time steps [as in (8)], and let ( B ( i ,  i, t ) )  =-- q', etc. 
Then from equations of the form 

1 - B ( i , i , t )  = [1 - A ( i , i , t ) A ( i , i , t  + 1)1 

•  A ( i , i  + 1 , t ) A ( i  + 1 , i , t  + 1)] 

•  1 , t ) A ( i -  1 , i , t +  1)] (31) 

we get 

1 - q ' =  (1 - q2 ) (1  - r2)2(1 - p 2 ) 2  

1 - p'  = (1 - pq)2(1 - pr)  2 (32) 

1 - r ' =  (1 - qr )2 (1  

Equations (32) are exact. What needs to be noted, however, is that with two 
time steps there is also the possibility of a bond from A to J, and the 
parameter space (so far just q, p, and r) would have to be further extended 
if another scale transformation would be performed. A second scale trans- 
formation using only the parameters r', p', and q' would also neglect the 
fact that the new parameters are correlated. That is, for the original bonds, 
the probability of an A - D  connection is p whether or not the A-B 
connection exists. Consider, however, the (conditional) probability for an 
A - H  bond given that there is an A - F  bond. The given information on the 
A - F  bond increases the a priori probability for the existence of an A - C  
bond which in turn makes the A - H  bond more likely. Thus the full 
parameter space after a single time step decimation includes not just q', p', 
and r' but a set of correlations and three- and four-step probabilities. 

Equation (32) is of the general form 

P; = r , ( p o  . . . . .  PM), i = 0 , . . . ,  M (33) 

for nonlinear F i. This transformation will be iterated, neglecting the neces- 
sity of expanding the parameter space on successive transformations. 

The transformation has several fixed points which we designate p 
= (Po . . . . .  PM)" First p(0) = (0, 0, 0) (M = 2 in our case) indicates a com- 
pletely unconnected lattice. For p ( o _  (1, 1, 1) the lattice is completely 
connected with an infinite percolating cluster. The point p(V) = (1,0, 1) is 
also a fixed point and indicates a lattice with an infinite percolating cluster. 
All the above are attractors. Numerically we find two other fixed points 
which are repellers: p(C} = (0.34227,0.30096, 0.22560) and p(C') = (0.57430, 
0, 0.45056). 
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To find Pc we take an initial condition p = (0, p, 0) and iterate. For 
P < Pc the iteration leads to p(0) while forp  > Pc the iteration should lead to 
one of the connected fixed points. (In fact it leads to p(l'). This will be 
discussed below.) Carrying out the foregoing scheme numerically leads to 
the following value for Pc: 

Pc = 0 .6317 , . .  (34) 

Next consider the critical exponent for the "time" correlation length, 
i.e., 

(Pc - p ;  (35) 

for p <Pc (our considerations apply as well to p > Pc). Using the usual 
renormalization group theory arguments we get 

log 2 
v -  log~ (36) 

where )~ is the largest eigenvalue of the matrix ~F~/Opj evaluated at the 
repelling critical value of p. 

For the problem at hand there is some question as to which repeller 
p(c) or p(c') should be used for the evaluation of )~. The initial condition 
(0, Pc, 0) leads to p(c,) because of a special property of the transformation, 
namely, if ever p becomes zero it stays zero. For any initial condition 
(0, p, 0) this happens on the first step. However, any slight perturbation, 
say, (0, p, r) for very small r, sends the trajectory to p(c) instead. Moreover, 
the critical point p(C') has its own peculiarities: two eigenvalues of OFi/~Pj 
exceed 1. If p(c') is the physical fixed point then the larger is nonphysical 
since it leads out of the set of values (q, 0, r). The smaller eigenvalue at p(c') 
leads to a critical exponent 1.50 (the larger eigenvalue would give 0.97). The 
critical exponent associated with p(C) is v = 1.25. 

The fact that small perturbations in the (0, 1, 0) direction lead away 
from p(c,) might suggest that O(c) is the physical fixed point. However, such 
perturbations do not occur. The first step from (0, p, 0) to (q, 0, r) is exact 
and on subsequent steps the neglected correlations would not, in fact, 
introduce any contribution proportional to (0, 1, 0). Therefore, with three 
terms allowed (M = 2) we have 

v = 1.5 (37) 

One can also expand the parameter space and we have looked at 
M = 3, 4, and 5. The value of Pc is unchanged for M = 3, because of the 
peculiar vanishing of p (=p(1))  as well as p(3) on the second iteration. 
M = 4 and 5 give a value of pc of about 0.571, which is considerably worse 
than 0.63 when compared to the values obtained from computer simula- 
tions. See our comments in Section 5 on this phenomenon. The critical 
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exponent for M = 5 from the smaller eigenvalue (but still greater than 1) 
near p(C,) is 1.25 and the nonzero elements of p(C'), namely, (Po, P2, to4) 
appear to be equal to (P0, Pl, P2) of the M = 2 fixed point at p(C). 

The computer simulations give Pc = 0.639 _ 0.003 and v = 1.5 + 0.2 
for the region of p < Pc. For  p > Pc we obtain/3 and find/3 = 0.31 _ 0.05 
withpc = 0.644 ___ 0.001. The values of pc obtained above and belowpc seem 
to differ slightly but are in reasonable agreement with the calculated value 
(-~2.5%). Mauldon (9) found a value forpc of 0.630. We have not calculated 
/3 theoretically but we can compare our results with those of Blease. (l~ 
From a series calculation he obtained/3 = 0.28 + 0.02, consistent with our 
value. From simulations we get 7 = 2.11 _ 0.15 (see ref. 10 for definition 
of y). 

The agreement between our theory and the numerical simulations is 
thus good both for Pc and for v, provided one stops at M = 3 or 4 and takes 
p(C') as the physical fixed point. 

5. TWO-PLUS-ONE-DIMENSIONAL PERCOLATION 

This is the case of astrophysical interest. As discussed in Section 2, we 
choose a two-dimensional triangular lattice. When the random variable % 
takes the value 1 the site (or "cell") is said to be alive and in the 
astrophysical case corresponds to there being a bright young star (or stars) 
in the cell. The probability p is the probability that the supernova explosion 
of this bright star leads to the formation of a bright star (or stars) in an 
adjacent cell. In references 1-4 the rule used for generating the stochastic 
galaxy evolution is 

P r o b I % ( t  + 1) = 1] = 1 - (1 - p ) "  (38) 

where n is the number of live neighbors of cell a. Equation (38) can be 
rewritten in terms of our previous notation as 

6 

%(t + 1) = 1 - I-I [1 - A~to~(t)] (39) 
B=l 

where /3 runs over the six neighbors of cell a at time t. To see that (38) 
follows from (39) take the expectation value of (39): 

l ) ) = P r o b [ % ( , +  1)= l]= l -  ( I-I[1- A~,,o,(,)] ) (40) (oo(t + 

In (40) the expectation is only over the sample space associated with the 
A's. The configuration of the sigmas at time t is assumed given. Since the 
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A's are all independent (40) yields 

( o , ( t + l ) ) = l - I - [ [ 1 - ( A ~ , ) o ~ ( t ) ] = l - ( 1 - p )  n (41) 
B 

From (39) we make a mean field theory estimate of p, the density of 
living cells in the galaxy. Assuming no correlation between neighboring 
cells, we take an expectation of (39) in which the sigmas too are random 
variables. Thus 

p(t) = (o~(t)),  any a (42) 

(we neglect systematic spatial variation of o in the galaxy). The assumption 
that the sigmas are uncorrelated means that (6 ) 

0 ( t + l ) - - 1 -  1-I (1-A~Bt~162 = l - [ 1 - p 0 ( t ) ]  6 (43) 
B = l  

A fixed point of (43) is an equilibrium density and the equation 

o --- 1 - (1 - 0p) 6 (44) 

provides a function 0(t)). As before, O ~ 0 is a solution and for p > 1/6 
there is a second solution which approaches 1 as p approaches 1. There can 
be no more than one solution in the real interval (0, 1). In Fig. 2 we show a 
graph of O(p) with the solution of Eq. (44) marked as a solid line. Also 
shown are experimental points for densities of nonrotating galaxies taken 

I I I I 1 I 

0.8 

0.6 ~ 

~) 0.4 ~ 

0.2 ~ s  

0 I I I I 0.16 0.20 0.24 0.28 

P 
Fig. 2. The solid line is zeroth-order mean field theory, i.e., the solution 0(P) of Eq. (44). The 
dashed line just below it is O(P) from Eqs. (50)-(53), a solution that includes the effect of 
lowest-order cumulants. The circles are the results of numerical simulations with zero rota- 
tional velocity. 
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from time averages of a number of stochastically evolving galaxy models. 
For p > 0.22 agreement is fairly good showing that even for p as close to 
the critical value as 0.22, correlations do not play a significant role. 

However, experience with the galaxy models has shown that the 
formation of spiral arms most resembling those found in nature takes place 
for 0.02 < p < 0.1. From the graph, these values of p are obtained for p 
much closer to critical than 0.22 and the lowest-order theory is therefore 
unsatisfactory. A further reason for believing the p regime in which correla- 
tions are significant to be the important regime for spiral arm formation is 
the dependence of density on shear (with given p). The density is in fact 
found to increase. This can be understood by noting that, whatever else 
shear does, it surely cuts down on the effect of correlations since it causes 
cells to be influenced by more distant cells than would be the case if there 
were no shear. This is consistent with Fig. 2 since the mean field 0 always 
lies above the experimental (correlated) p. 

Before considering improvements to (43) we calculate from (44) a 
mean field critical exponent governing the extinction of p as p ~ 1/6. For 
Eq. (44), Pc = (critical probability) = 1/6. The critical exponent fl is defined 
in Eq. (7). From (44) it is easy to show that 

P = ~(P -Pc) + O((p - pc)2), P >Pc (45) 

and fl is therefore 1. 
A first improvement to our theory includes the effect of two-cell 

correlations for nearby cells. Again take the expectation of (39), but now 
keeping two-cell cumulants [see Eqs. (24)-(26) and Ref. 8] (6 / 

p ( t + l ) = ( % ( t + l ) ) = l -  I-I [1-A~l~,o#(t)] 
B=I 

= 1--(1--100) 6 - ( 1 - t 0 0 )  4 

• (46) 

where the subscript c stands for cumulant and the sum includes one 
contribution from each pair a v and % (7 ~ 8). p with no argument is O(t). 
Since the A's are all independent we have 

([1 - Aawov(t)][1 - Aast%(t)])c=pZ(ov(t)%(t))c (47) 

It remains therefore to evaluate ~pair~(or(t)%(t))~. This is done, as in 
Schulman and Selden, (8) by assuming that the correlations at time t are 
those arising through the evolution rules from an uncorrelated state at time 
t - 1. In effect we are only looking at first-order terms in the cumulants. By 
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Eq. (39) and by the definition of cumulants 

(%(t)o~(t))c= ( [1  - o~(t)][  1 - a~( t ) ] )c  

= [ 1 - A ~ t _ , % ( t - 1 ) ]  I-[ [1--A~, t_l%(t--1)]  
~=1 6.=1 

- I I  [ 1 -  A o , , _ l O , ( t -  1)] (48) 
~=l 

If the product over ~ and the product over ~ had no common cells then 
with the neglect of cumulants at t -  1 the cumulant on the left-hand side 
would be zero. So for given 7 and 6 we look for cells that appear in both 
the products over ~p and over q~. For such a cell, say, 0, 

( [1  - A,o,_,Oo(t- 1)1[1 - A~ot_lOo(t- 1)])  

= 1 - 2eo(t  - 1) + e2 (~o~( t -  1)) 

= 1 - 2pp(t  - 1) + p 2 o ( t  - 1) (49) 

since o z =  o. The correlation comes about because the coincident cell 
causes 0 to appear as the last term in the sum in (49), rather than O 2. If for 
a pair ~,, 6 there is a single coincident cell (among the six neighbors of each) 
then calling this cumulant S ("single"), we have 

(ov(t)o,(t)) = S = ( 1 - p p ) ' ~  (50) 

the p's on the right being p(t - 1). Obviously 

s = e : p ( l  - 0)(1  - pp) ,0  (51)  

If V and ~ have two common neighboring cells, the cumulant will be 
designated D ("double") and 

(oy(t)o,(t))c= D = ( 1 - p p ) 8 [ ( 1 - 2 p p - b O l p 2 1 2 - - ( 1 - - p p )  4] (52) 

Next look to each pair in the product in Eq. (46) to count the number of 
pairs having 0, 1, 2 or more common cells. Figure 3 is a diagram of a cell 
and its neighbors. Cells are not actually drawn in the diagram, but rather 

Fig. 3. Cells (vertices) and their neighbors. 
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the vertices represent cells. Letting o~ of Eq. (46) be 0, then the pairs are all 
pairs of the set ( 1, 2, 3, 4, 5, 6}. Consider a pair of the sort 1-2. For purposes 
of checking their common neighbors, this is the same as looking at the pair 
0-3. Among the neighbors of 0 and 3 exactly two are common, namely, 2 
and 4. Hence the pairs 1-2, 2-3, 3-4, 4-5, 5-6, and 6-1 all contribute terms D 
to the sum over pairs in (46). A pair of the sort 1-3 also gives a contribution 
D since 1 and 3 have exactly 2 common neighbors (0 and 2). (When we 
wish to distinguish the two sorts of "double" cumulants, type 1-2 will be 
designated D and type 1-3, D'.)  This gives 6 more D's: 1-3, 2-4, 3-5, 4-6, 
5-1, 6-2. Finally, there are the pairs 1-4, 2-5, and 3-6 all of which obviously 
give S. 

This is all the information needed to iterate the density. We summarize 

o(t + 1) = 1 - [1 - po(t)]6__ [ l - -  pO(t)]4p2(12D + 3S)  (53) 

and D and S are given by (50)-(52) involving p(t - 1). 
To find the equilibrium "equation of state" O(P), all O's in (50)-(53) are 

set equal and the system solved. Again there is always the trivial solution 
p = 0. In Fig. 2 we also plot (the dashed line) the curve of nontrivial 
solutions p(p) of the Eqs. (50)-(53). Although slight improvement can be 
noted, the theory clearly misses the mark. (The value of Pc given by this 
improved mean field theory is Pc = 0,1704, better than 1/6, but still far 
from the "experimental" value of 0.183.) 

Visual inspection of low-density galaxy models suggests the origin of 
the discrepancies. Living regions are patchy and isolated. There are large 
dead regions, which we shall call "vacuum." A vacuum area can only come 
alive through the invasion of life from other regions. Within the vacuum 
what is dead stays dead, and the probabilistic considerations given above 
are particularly inaccurate. Said otherwise, the formation of vacuum repre- 
sents a very-high-order correlation. 

Granted that the above theory does not well describe the vacuum, one 
can ask if it is accurate within the living regions. To this end we define a 
quantity PL, local density, the density in the nonvacuum areas. A vacuum 
cell is defined as one that is dead and has no living neighbors. If the entire 
model galaxy has M cells of which L are living and V are vacuum, then 

L (54) OL"-~" M - - V  

In terms of the statistical model this is 

6 O (55) 

PL= 1 - - (  I ' I (1-%))a=0 
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the seven cells in the product being a cell (0) and its six neighbors. The 
product in (55) can be evaluated to second-order cumulants to give an 
expression 

= pairs 

= (1 - p)7+ (1 - p)5(18D + 3S)  (56) 

The six additional D's in (56) [compared to (53)] arise from cumulants of 
the central cell with its neighbors. 

In Fig. 4 experimental local densities are compared to the theoretical 
predictions. Evidently, even at the lowest (experimental) values of O (which 
correspond to p-->Pc) the theory is doing quite well on the local density. In 
fact, the lowest-order mean field theory (solid line in the figure) does not do 
too badly either. 

It follows that an important defect in the mean field theory is the 
inadequate description of the vacuum. It is apparently the high-order 
correlations associated with vacuum that cut down the density, and pre- 
sumably the effect of shear is the disruption of those correlations so as to 
allow increased density. In Section 6 we shall elaborate on the important 
effect that clumping both in the vacuum and in the living regions has on 
the formation of well-articulated spiral arms. 

P 

0.6 

0.4 

0.2 

I I I I ' I I I 

O O 

d~ 
O 

I ~  I I I I I I 
O. 18 0.20 0.22 0.24 

P 
Fig. 4. Local densities. Curves are mean field theory predictions for local density with 
(dashed line) and without (solid line) lowest-order cumulants. Squares are experimental local 
densities. Experimental total density (circles) has also been plotted to bring out the extent to 
which exclusion of vacuum affects the density. 
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5.1. Scale Transformation 

The scale transformation to be applied to our (2 + 1)-dimensional 
directed percolation problem is time step decimation. We define B(a, B, t) 
to be a random variable taking the value 1 if there is some path of forward 
directed bonds from site a at time t to site fl at time t + 2, and zero 
otherwise. Therefore the following relation is exact 

1--B(a ,  fl, t ) = l - I [ l - - A ( a , ~ , t ) A ( ~ , f l ,  t+  l)l  (57) 
Y 

In Eq. (57), a, r ,  and 7 are not restricted to being nearest neighbors. Until 
now we have taken A (a, r ,  t) to be zero unless fl was one of the six nearest 
neighbors of a, in which case it took the value 1 with probability p. (With 
shear some further variation was permitted, but for scale transformation 
considerations we shall only study the case of no shear.) Note though that 
if A is nonzero for nearest neighbors only, B no longer has that property. 
Since our intention is to iterate the transformation we must consider more 
elaborate connection rules. Each possible connection will have its own 
probability and we enlarge the parameter space from p to p = (P0, 
Pl . . . . .  PM) for various possible bonds 1 . . . . .  M (to be defined below). 

Clearly, no matter how large M, successive iteration of a relation of the 
sort (57) will eventually make the parameter space ( P 0 , . - .  ,PM) inade- 
quate. For this reason we deal with a truncated version of (57) in which 
some of the induced connections are discarded. A second effect that we 
neglect is the correlations among various B's  resulting from their being 
built up from the A's. Thus (by definition) the A's are all independent 
random variables and (A~13tA~,B,t,)c = 0 so long as not all three indices (or 
arguments) are the same. By contrast, it is easy to see that 

(B(0 ,2 ,0 )B(0 ,0 ,0 ) )  = ( 1 -  p2)4{(1 - 2p 2 + p3) 2-  (1-/04) 4} ~z~0 (58) 

where sites are labeled as in Fig. 3. In our scale transformations we shall 
also neglect these induced correlations. 

In our calculations we have used from two to nine parameters. In Fig. 
5 we indicate the cell-cell connections associated with the various parame- 
ters. To get all connections up to first-nearest neighbors P0 and Pl are 
needed; for second-nearest neighbors use P0 to P3; and so forth. As in other 
renormalization group type calculations, increasing the number of parame- 
ters need not improve results. In our ease the source of this can be traced to 
the effect of neglected correlations. 

The result of an iteration is to produce a set of parameters p' 
= (P~, �9 �9 �9 P~t)- The equation for the iteration is gotten from Eq. (57) by 
taking a particular pair of sites for which there is an associated parameter 
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P o s ~  

Fig. 5. Parameters for the probabilities of various site-site connections. Thus the probability 
that there is a connection from site a to itself on the next "time" step is P0. The probability 
that there is a connection from site a to site fl (or to site "f or from fl to 7) on the next time 
step is pl. 

in the parameter  set and evaluating the expectat ion of "B"  for that pair by  
allowing all possible intermediate sites in the product  and neglecting 
correlations. Newly generated nonzero probabilities for pairs of sites out  of 
the parameter  set are dropped.  For  example, suppose we are restricted to 
first-nearest neighbors only, so p = (P0, P~). Then  the scaled probabil i ty for  
a site to be connected to itself (on the next, scaled, time step) is 

p6 = 1 - (1 -/)02)(1 - 102)  6 (59) 

Similarly, the scaled nearest neighbor probabil i ty is 

P'l = 1 - (I - p0p,)2(1 - p~)2 (60) 

For  this t ransformat ion there are two obvious fixed points: p(0) = (0, 0) 
and p ( l ) =  (1, 1) represent ing complete ly  disconnected and connec ted  
(three-dimensional)  lattices, respectively. The  critical fixed point  is p(C) 
-~ (0.330141,0.215488) and this is reached for an initial vector  Pin =-(0, 
0.308158) so that Pc ~ 0,308 (which is large compared  to the computer  
simulation value of 0.183 given in Table  I). 

The  critical exponent  for the correlat ion length in the time direction is 
obta ined as in Eqs. (35) and (36), where X is the largest eigenvalue of 
3Fi /3pj  evaluated at p(C) and F/ is defined as in Eq. (33). The value of u 
f rom the iteration rule (59)-(60) is 

p = 1.20 
Consider  next  scale t ransformations involving more  parameters.  To 

facilitate the writing of these t ransformations we introduce the following 
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Table I. Critical Parameters from Simulation Experiments for the Case of 
2 + 1 Dimensions. 

F r o m p  < Pc da t a  F r o m p  > Pc data 

Shear a pc v Pc fl 

0 0.1830+0.0012 1 .13+__0 .11  0.1831+_0.0004 0.65+_0.06 
0.1 0.1815 1.12 
0.2 0.1798 1.10 
0.4 0.1791 1.09 0.1792 0.66 
1.0 0.1757 1.07 

10 0.1719 1.04 0.1730 0.69 

aWith no shear we get u = 1.50 + 0.10 (see Blease O~ for definition of "D. 

notation 
R(i ,  j )  = 1 -  pipj (61) 

The iteration rule will be written as 

p; = 1 - I-I R( i ,  j )  K~(i'j) (62) 
l,j 

where the product is over i and j but with j < i, so that each possible pair 
appears exactly once. The transformation is then specified through the 
exponents Kt(i, j )  which are given in Table II. For the scale transformation 
involving k parameters (k = 2, 4, 6, or 9) truncate the matrices Kt( i , j )  to 
those in which only entries with l, i, j < k are included. 

For each of these scale transformations there is a pair of trivial fixed 
points: (Pi = 0, all i) and (p; = 1, all i). In addition there is a critical fixed 
point and an associated largest eigenvalue of the transformation. In Table 
II i  we list the fixed point and the value of v associated with the eigenvector 
and eigenvalue in accordance with Eq. (36). For each of these there is a 
value of p (the original probability of nearest-neighbor connection when no 
other connections are allowed) which we call Pc such that for p < Pc and 
Pi,itial = (0, p . . . .  ) the iteration leads to (0, 0 , . . .  ) and for p > Pc, (0, p, 
0 . . . .  ) leads to (1, 1 , . . .  ). For an initial vector (0, Pc, 0 . . . .  ) the iteration 
leads to the vector p(C). 

The simulation results are shown in the first line of Table I. Observe 
that the best agreement between theory and simulation occurs using nine 
parameters in the calculation of Pc, but better values for v are predicted 
when fewer parameters are used, namely, 4 or even 2. This is, in fact, a 
reasonable situation. It can be shown (11~ that with the neglect* of correla- 
tions produced by scaling, the fixed point necessarily has v -- 1. Hence for 
the calculation of v one does not wish to enlarge the parameter space to the 
point where correlations become very important. There is, of course, the 
embarrassment that without the simulation data one would not know where 
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Table II. Exponents of the Factors (1 - pgpj) Entering the Scale 
Transformation. Listed Below Is the Array Kl(i, j )  of Eq. (62). Only the 

Diagonal and Upper Triangle Are Used. Blank Entries Are Zero 

I = 0  l = 1  l = 2  
0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  

0 1 0 2 0 2 
1 6 I 2 2 4  1 1 4 2 4  
2 6 2 4 2 4  2 2 2 4 
3 6 3 4 3 4 4 
4 6 4 4 4 4  4 4 
5 12 5 2 4 4  5 4 
6 6 6 4 6 4 
7 12 7 4 7 2 
8 6 8 8 

l = 3  l = 4  l = 5  
0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  

0 2 0 2 0 2 
1 2 4  4 1 2 4 2 4  1 2 2 2 2  2 2  
2 4 4 2 4 2 2 2  2 
3 2 4  2 3 2 4 3 2 2 2  
4 4 4 2 4 2 
5 2 4 4  5 4 5 2 2  2 
6 6 4 6 
7 2 7 7 2 
8 8 8 

l = 6  l = 7  l = 8  
0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  0 1 2 3 4 5 6 7 8  

0 2 0 2 0 2 
1 2 4 1 2 2 2  2 1 4 4 
2 1 4 2 2 2 2 2 2 4 
3 4 3 2 2 3 1 4  
4 4 4 2 2  4 
5 2 5 2 5 2 4 
6 2 6 6 
7 7 2 7 
8 8 8 2 

to s top  e n l a r g i n g  the  p a r a m e t e r  space  fo r  p a n d  h o w  far  to c o n t i n u e  for  Pc- 

Th i s  is, in  fact ,  a gene ra l  p r o b l e m  of  the  r e n o r m a l i z a t i o n  g r o u p  m e t h o d  a n d  

it is k n o w n  tha t  e n l a r g i n g  the  c o o r d i n a t e  space  m a y  w o r s e n  results .  N o t e  

tha t  as the  shea r  increases ,  1, does  d e c r e a s e  t o w a r d  uni ty .  T h e  e f f ec t ive  

l o n g - r a n g e  i n t e r a c t i o n  i n d u c e d  b y  shea r  exp la ins  this. As  fo r  the  case  of  

1 + 1 d i m e n s i o n ,  Blease  (1~ has  c a l c u l a t e d  fl a n d  f inds  0.60 _+ 0.05, in g o o d  

a g r e e m e n t  wi th  o u r  result .  In te res t ing ly ,  we  f ind  fl to  be  c lose  to (d- 1)/d 
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Table III. Critical Properties for Various-Size Parameter Space. 
p(C) Is the Critical Repeller. k Is the Number of Parameters Used, 

Pc Is the Value of the Initial Nearest-Neighbor Connection Probability 
Needed to Hit p(C) Under the Iteration. v Is as Given in Eq. (36). 

k pc v p(~) 

2 0.308 1.20 
4 0.207 1.09 
6 0.1886 1.04 
9 0.1804 1.01 

(0.33014,0.21549) 
(0.12602,0.10253,0.06206,0.07307) 

(0.06527,0.05753,0.04395,0.04750,0.02802,0.03350) 
(0.03972,0.03637,0.03060,0.03203,0.02334, 

0.02578,0.01576,0.01864,0.01968) 

for 2 + 1 dimensions which is the value suggested by some rather heuristic 
arguments of Shante and Kirkpatrick. (12) 

5.2.  Ef fect  of S h e a r  

Before doing a detailed calculation a few qualitative remarks are in 
order. It is shear that lies behind the stable arm morphology in galaxies in 
two distinct ways. First there is a simple kinematic effect. Just as a gob of 
dark-colored dough in a light batter will elongate and spiral as the dough is 
mixed, so a patch of living cells will be drawn into a spiral shape. The fact 
that the system is near a phase transition enhances this effect since the long 
correlation lengths near criticality tend to enlarge the "patches" of living 
cells. However, there is another important effect. The shifts (changing of 
neighbors) due to the shear give rise to increased production of stars at the 
sites of the shifts. That this is so can be seen from comparison of the mean 
field and exact (experimental) functions p(p). From Fig. 2 it is clear that 
for small p correlations play an important role in cutting down the number 
of stars. The shifts due to shear destroy some of these correlations and 
hence enhance "fertility." A direct way to see this is to consider the 
expected number of descendents of two living cells distant from each other 
and from all other living cells. The expected number is 12p. By contrast, it 
is easy to show that for adjacent cells this expectation value is 12p - 2p 2, 
cutting down fertility. Shear, therefore, by spreading the clumps of stars 
that tend to develop for p near Pc, enhances fertility and an increased 
number of stars may be expected to appear along the shift lines. 

We have observed that spiral structure is most pronounced for p ~< 0.1, 
which requires p near Pc and large correlations and clumping. For this 
reason it appears that the second consideration given above is important in 
establishing galactic morphology. Keeping second-order cumulants, as in 
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Fig. 6. (a) Cells at time t + 2 and, for the case of no slippage, at time t + 1 also. (b) Cells at 
time t + 1 for single slippage, as indicated by arrow. (c) Cells at time t + 1 for double slippage. 

Eq. (46), the density at time t + 2 is given by (6 ) 
p(t + 2 )  = (oo(t + 2)) = 1 -  ]-I [ 1 - -A jo t+ lo j ( t+  1)] 

j = l  

= 1 - [ 1 - p p ( t +  1 ) ] 6 - [ 1 - p p ( t +  1)] 4 

• ~] (oi( t + 1)oj(t + 1)) c (63) 
pairs 

where the cell numbering is given in Fig. 6a. As in the no-shear calculation, 
cumulants at time t + 1 arise from the configuration at time t and we shall 
calculate them as if the time t configuration were of density p(t) but 
without correlations. However, for a given pair entering the sum in (63) the 
kind of cumulant that it contributes (D or S, etc.) will depend on the time t 
configuration, which in turn depends on whether there has been a shift. For 
example, with no shift, the 2-4 pair yields a D (double) cumulant, while 
with a single shift (cf. Fig. 6b) it is only an S (single) cumulant. With two 
shifts (Fig. 6c) there is even greater change. In Table IV is a list of pairs 
and the kind of cumulant associated with each pair in the case of 0, 1, or 2 
shifts. Adding the contributions in the table and recalling that in fact D 
and D '  are equal yields 

~ 12D + 3S 

X l~ + 3s  
pairs ' [ 8D + 2S 

(no slip) 

(one slip) 

(two slips) 

(64) 

The foregoing takes into account shifts taking place at time step t + 1 
and the effect of these shifts in determining which cumulants enter the sum 



106 Schulman and Seiden 

Table IV. Pairs and Associated Cumulants. D and S Are Defined in Eqs. (50) 
and (52). A Distinction Is Made Between D's Arising from Pairs of Adjacent 
Cells and Those From Cells at Opposite Sides of a Rhombus. The Latter Are 

Primed, but Their Numerical Value In our Calculations Is Exactly the Same as 
That of D. X Indicates No Cumulant to This Order. 

Pair No slip One slip Two slips 

1-2 D D D 
1-3 D '  D D 
1-4 S D: S 
1-5 D '  S X 
1-6 D D '  D '  
2-3 D D D 
2-4 D '  S X 
2-5 S X X 
2-6 D '  X X 
3-4 D D D' 
3-5 D'  D '  X 
3-6 S S S 
4-5 D D D 
4-6 D '  D '  D 
5-6 D D D 

in (63). A shift at time step t operates differently: It interferes with the 
building of the cumulants. Consider a cumulant of type D'  (cf. Table IV), 
namely, (olo2) c of Fig. 7. This was calculated earlier by assuming no 
correlations at time t but by taking into account repetitions of the same site 
variable. Hence without shift, the two common neighbors of 1 and 2, 
namely, 3 and 9, give rise to a "double" cumulant [cf. Eq. (52)]. Suppose, 
however, that a shift took place at time t as indicated by the arrows (the 
time t + 1 configuration is shown in the figure). Then the neighbors of 1 at 
time t were sites 3, 4, 5, 6 (as before) and 7 and 8. The neighbors of 2 were 

1 ! ---> 

<_._ 

Fig. 7. Time t + l site labels. Arrows indicate direction of shift that took place at time t, so 
that site 8 was at the t + 1 position of site 9. Shift may be thought of as occurring along the 
dotted line. 
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9, 10, 11, 12 (as before) and 13 and 14. Hence in the product 

a~R1 tiER2 

there are no common sites and the cumulant in this approximation is zero. 
To calculate the total effect of shifts on the buildup of cumulants (in 

this approximation) one must go through Table IV entry by entry. Not  all 
D'  cumulants are affected in the same way as that described above. For 
example, with the same shift direction, (o803) c (site labels of Fig. 7) simply 
changes from D' to D. On the other hand, <a409) c becomes an S-type 
cumulant. D-type cumulants either are unchanged or become type D ' - - i n  
either case taking the same value in this approximation. In Table V we 
show the changed cumulants for each pair for the shift pictured in Fig. 8. 
The net effect of the shift therefore is D'---> S twice, D ' ~  0 once, S---> 0 
once, S--~ D once and D'  ---) D once. 

The two effects we have just discussed, that is, the changes in the 
cumulant terms due to shear, will be used in Eq. (71) below. 

In our calculations for O when cumulants were needed we used a 
lowest-order approximation for those cumulants that neglected correlations 
in the buildup of the cumulants. That this severly underestimates the 
cumulants close to Pc can be seen from the poor agreement of p(p) with 

Table V. Each Cumulant <oi~)c Is Labeled by the Pair 0 (in Column 1), the 
Labels Corresponding to the Time t + ] Diagram of Fig. 8. Column 2 Gives the 

No-Shift Cumulant Type for That Pair and the Third Column Gives the 
Cumulant Type with Shift. 

Pair No shift Shift 

1-2 D D 
1-3 D '  S 
1-4 S Vanish 
1-5 D '  Vanish 
1-6 D D 
2-3 D D 
2-4 D '  D '  
2-5 S S 
2-6 D '  D 
3-4 D D 
3-5 D '  D '  
3-6 S D 
4-5 D D 
4-6 D '  S 
5-6 D D 
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Fig. 8. 

t t + l  

Labels for shift at time step t. Arrow indicates direction of shift. Shift may be thought 
of as occurring along the dotted line. 

simulation results very near Pc. Since the major effect of shear as so far 
described is expressed through cumulants (their substitutions and suppres- 
sions), it is clear that we shall require more accurate values for them near 
the critical point. 

Our approach to estimating the size of the cumulants will be empirical 
and what will result is a one-parameter fit for the dependence of Pc on 
shear, that parameter being the value of Pc at zero shear. The latter quantity 
will be independently ascertained below both numerically and theoretically. 

The basic, exact equation of motion is Eq. (39) and in Eq. (40) we 
looked at its cumulant expansion to a certain low order. Consider the exact 
cumulant expansion of Eq. (39): 

(o~(t + 1)) = 1 - [ 1  -p(o~(t ) )  ] 6 - [ 1  -p(o~(t))]4 

• E 3 
pairs 
y,6 

• E ( [1-p%(t ) ][1-P~176 
triples 
y,8,e 

- (cumulants of 4, 5, and 6 factors) 

- - [ 1 - - p ( O a ( t ) ) ] 2 p a i ~ r s y ,  8 ([1--p%(t)][1--po~(t)])c 
pairs e,~" 

• ([1-poc( t )][1-po~(t )])  C 

- (other terms involving products of cumulants) (65) 

where the pairs y, 8 are appropriate neighbors of a, and similarly for the 
triples. When two pairs of pairs are taken they run over all possible distinct 
pairs of neighbors of a and similarly for other product terms. More on this 
expansion is given in Schulman and Seiden. (8) Both (o~(t + 1)) and 
(o,(t)) can be replaced by p since we are interested in the equilibrium 
situation. Expressions such as (oro~) c will be taken to refer to appropriate 
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neighbors of some particular site a at the same time t, although a and t will 
now be dropped from the notation. With the expansion of various products 
(65) becomes 

0 = 6po - 15p2p 2 4- 0(0 3) 

- (I - po ) ' p  2 2 + (1 -po)3p 3 
pairs triples 
y,8 y,3,e 

. . . . .  ( 1 - p o ) 2 p  4 E ( % a ~ ) ~ ( ~  (66) 
pairs "/,8 
pairs e,f 

For p approaching pc from above the behavior of O is given by 

p _ ( p  _ p~)B (67) 

In examining (66) for leading behavior as p ~Pc  we do not have any a 
priori knowledge of the behavior of the cumulants. From simulation results 
we know, however, that they cannot all approach zero more rapidly than p 
[as given by (67)] for otherwise (66) would reduce to 

(6p - 1)p = o(0) 

yielding Pc---1/6, exactly, which is incorrect. On the other hand, the 
cumulants cannot go to zero more slowly than p, for consider, for example, 
a two-site cumutant 

The first-order relation follows because (o~)(o~)= p2 and therefore van- 
ishes faster than the cumulant. Hence it necessarily vanishes faster than the 
expectation of the product. The second order inequality follows by replac- 
ing o~ by 1 always, which must not decrease the value of the expectation. It 
follows then that at least some cumulants are O((p -pc)B). In (66) we can 
therefore drop terms involving products of cumulants as well as p2 terms to 
yield 

pairs triples 
y,~ y,3,e 

+ (cumulants for 4, 5, and 6 sites) (68) 

To O(p) Eq. (68) is exact. We now assume that two-site cumulants are 
larger than three- (and higher) site cumulants. In the Appendix we give a 
lowest-order calculation for a three-site cumulant and find it to be smaller 
than two-site cumulants by a factor p. Although we do not expect the 
expression derived there to hold near Pc it seems reasonable to suppose that 
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whatever values two- and three-site cumulants do take, the two-site cumu- 
lants will be somewhat larger. We therefore neglect all but two-site cumu- 
lants in (68) to obtain 

~_~ ( ~ 1 7 6  6 p c -  1 
pairs ]92 p (69) 
y,8 

where ]9 has been replaced by Pc, permissible to leading order. 
The above considerations are valid with or without shear. We next 

introduce a parameter w to characterize the shear or shifting of cells past 
one another. All terms in Eq. (69) will then be treated as functions of w and 
we shall obtain the dependence of Pc on w. The parameter w is defined as 
the amount one row shifts past the adjacent row, measured in units of cell 
size. Thus, if xij(t) is the x coordinate of cell (i, j )  [ = (row, column)] at time 
t then 

[xi+, j(t + 1)-Xi+ l j ( t ) ] -  EX/j(~ "1-1)--X/j(t)]  
W = [ Xi J+ 1(t) __ Xij(t)  ] (70) 

The shear as defined in (70) is independent of i and j and in fact all 
bracketed difference quantities appearing are independent of i and j .  
Periodic boundary conditions are used throughout. 

To study pc(w) we rewrite Eq. (69) (which holds for any w) as 

p c ( w ) -  1/6 _ 1 ~ (crrga3(w) (71) 
pc(w) 2 60 , c pairs 

(w) 

The right-hand side of (71) has w written in two places, to emphasize that 
two effects are involved. First, with shear the pairs entering the sum 
change, and second the cumulants themselves are changed in value (re- 
duced, presumably) because of the shift. These effects were derived above 
and we summarize them for the case of a single shift around some given 
cell: 

change in sum: 6D + 6D'  + 3S-->6D + 4D'  + 3S (72) 

change in cumulants: 6D + 6D'  + 3S--->8D + 2D'  + 3S (73) 

where the meaning of (73) is that the cumulants that enter the sum were 
built up on the previous generation as if they were of the sort indicated on 
the right-hand side of the arrow. 

The sum in (71) is an average over the entire lattice and it is 
convenient to take a probabilistic approach to the shifts. Specifically to first 
order in w there are 2wN shifts per time step, where N is the total number 
of cells in the system. The 2 arises because for each slippage two cells are 
involved (marriage and divorce statistics are sometimes clouded by the 
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same factor of 2). Consequently, to first order in w, Eq. (71) becomes 

pc(w)- 1//6 
6p - (1 - 4w)(6D + 6 D '  + 3S)  

pc(w) 2 

+ 2 w [ ( 6 D + n D ' + 3 S ) + ( 8 D + 2 D ' + 3 S ) ]  (74) 

Second-order effects would include a single cell having a shift on both sides 
as well as shifts on two successive generations. A further approximation 
inherent in (74) is the use of (73) to describe the effect of shear on 
cumulants, as if their values (in particular the values of those involved in 
the shift) were built in a single time step. In addition we have the implicit 
assumption that the critical exponent fl is independent of w, which is likely 
to be accurate for small w. 3 

For Eq. (74) to be useful we need information on the relative size of D, 
D ' ,  and S. Now these quantities were calculated to lowest order above 
[Eqs. (51) and (52) with D ' =  D] but the result is known to be an 
underestimate. However, it seems reasonable to suppose that although the 
magnitudes are incorrect the relative sizes for p--)pc are given by (51) and 
(52). With this ansatz it follows that 

D - - 2 S  (75) 
D ' - - 2 S  

and we also assume these relations to be independent of w to lowest order 
in w. Equation (74) for w = 0 yields 

S =  6p[pc(O) - 1//6] 
27pc(0)2 (76) 

With (75) and (76), Eq. (74) can be rewritten entirely in terms of S and 
hence in terms of pc(0). Taking the derivative with respect to w [and using 
the notation p~(0) - 1//6 = Ap] gives 

1 dpc(w) 16 1 
Ap dw 27 1 - (2Ap/pc(O)) 

Using the data in Table I, p~(0)~0.183, and therefore we have the predic- 
tion 

ape 
- 0.012 

dw 

3 w = 0 and w = o0 are in different universality classes since the latter is a cross between 
1 + 1 and oo + 1 percolation. We expect, however, that fl does not depend strongly on w for 
small w. 
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This is in agreement with the value -0 .015 obtained from Table I for a 
shear of 0.1. 

We can see in Table I that Pc decreases appreciably with shear. For the 
largest shear, where 2 /3  of the correlations are completely destroyed (the 
correlations with cells in adjacent rings), Pc moves 2 /3  of the way from the 
zero shear result toward the mean field result (1/6). As previously discussed 
in Section 2.1, u decreases slowly toward unity, however, fl remains roughly 
the same. 

6. SUMMARY AND C O N C L U S I O N S  

Stochastic star formation theories of galactic evolution take the radical 
view of neglecting detailed dynamical considerations and treating star 
formation probabilistically. In this paper we handle the Markov process 
that arises thereby as a problem in directed percolation. The case of 
primary physical interest--for the purpose of describing disk galaxies with 
their commonly occurring spiral arms--is percolation in three dimensions. 
The lattice is L X Z where L is a two-dimensional triangular lattice and the 
integers Z represent time. Bonds may lead from a site a ~ L at some t ~ Z 
to fl E L at t + 1 E Z where fl is one of the six nearest neighbors of a. Such 
bonds exist with probability p and we find (numerically) the critical 
probability for percolation on this system to be Pc = 0.1830 + 0.0012. The 
critical index for duster  duration (i.e., for ~ the correlation length in the t 
direction, ~ [ P c  - p l  - " )  is v -- 1.13 +_ 0.11. For the percolation probability 
(which we call 0 because of its interpretation as star density) O~(P -Pc) B 
and we find fl = 0.65 + 0.06. (See below for y.) Away from the critical 
region mean field theory gives a rather good accounting for O; see Fig. 2. 
Moreover, even in the critical region mean field theory using first-order 
cumulants can give a good description of less-sensitive quantities, such as 
local density; see Fig. 4. This implies that the onset of the phase transition 
(from high p) is characterized by the growth of large regions of vacuum. In 
the critical regions we use renormalization group scale transformations 
(time step decimation) to get a value of p within experimental error. This 
method also gives a value of Pc. 

For  astrophysical purposes, namely, the description of rotation in the 
galaxy, it is desirable to consider a variation of the bond connection rule. 
The bonds from a site a do not always go to the nearest neighbors of ~t, but 
rather with some probability w go to more distant neighbors. The quantity 
w is related to the galactic differential rotation rate since with differential 
rotation an exploding supernova can induce star formation in relatively 
distant gas clouds brought near to it by the rotation. Our theoretical 
description gives a good estimate of the extent to which differential rotation 
reduces Pc and makes it closer to the mean field value. 
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The consequences of this model for astrophysics and, in particular, the 
ramifications of the association with phase transitions have been discussed 
in earlier publications.(1-4) We here comment only on the most graphic of 
these consequences, the appearance of well-demarcated spiral arms in 
many disk galaxies. (See Ref. 5 for another view of spiral arm morphology.) 

The proximity of the phase transition lies behind this morphology in a 
number of ways. First the long correlation lengths characteristic of second- 
order phase transitions lead to clumping even in relatively sparse systems so 
that galactic rotation can spread these large clumps into arms. Moreover, in 
addition to the clumping of the stars, there is the tendency for large clumpy 
regions of vacuum to develop (this follows from the successful calculation 
of the local density). When the galaxy rotates (differentially) the vacuum 
stretches too, providing the spaces necessary for the spiral arms to be well 
articulated. It also happens that this same clumpiness tends to cut down the 
expected number of progeny of any given living star so the fact that 
rotation reduces correlations (by displacing cells from their neighbors) 
means enhanced star formation along the slip lines in the cellular rotation. 
Finally, we note that another phenomenon familiar in phase transition 
work--critical slowing down--plays a role in the feedback mechanism 
described in our earlier work34) Not only does the feedback mechanism 
tend to send p to its critical value, but when p is in that range it will stay 
there longer, so that in observing a collection of galaxies one is more likely 
to come across those in the critical region. 

Two other percolation problems are studied although they are not of 
relevance to the stochastic star formation model. 

Directed percolation in the plane (what we call 1 + 1 dimensions) can 
be defined on the integer points of the plane with bonds allowed to go from 
a point ( i , j )  to (i + 1,j  + 1) and (i - 1, j  + 1). Computer simulation gives 
Pc = 0.640 _+ 0.005 and critical indices v = 1.5 _+ 0.2, fl = 0.31 _+ 0.05. (See 
below for ~,.) Time step decimation gives quite good agreement with Pc and 
v if one stops enlarging the parameter space at a judicious stage. 

What we call (oo + 1)-dimensional percolation considers the set ( l ,  
2 , . . . ,  N)  and a discrete time axes, with bonds going from any i to any j 
at the next time step. Bonds have probability p = x / N  and the limit 
N ~  oo is studied. The critical value is x c = 1 and several properties of 
this system are calculated; in particular the decimation transformation is 
rigorously exact so that this model serves as an example for our other 
calculations. 

APPENDIX.  THREE-SITE CUMULANTS 

Consider three different random variables X 1, )(2, and g 3 each of 
which is the product of other random variables Yi,, e~ ~ K~ where K,. is an 
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index set and i = 1,2, 3. Thus 

Xe = l-I  Yea (A.1) 
aEKi 

For given i the Yes are distinct and independent but for different i they may 
not be independent. 

[For the galaxy problem X i = 1 - oi( t  ) and Yi~ = 1 - A i ~ t _ l G ( t  - 1).] 
We wish to express the cumulant (X~X2X3> c in terms of the cumutants 

of the Y's. By the cumulant <X1X2X3> c we mean 

< X1X2X3>c ~- < XIX2X3> - [ < XIX2> < X3> -.~ permutations] 

+ 2 ( X , )  (X2) (X3) (A.2) 

Brackets on the right are ordinary expectation values. The variables X i are 
reexpressed in terms of Yi~ according to (A. 1) and by the general expansion 
in the appendix of Schulman and Seiden Cs~ the various expectations in 
(A.2) can themselves be written in terms of cumulants of Y's, for example, 

<XIX2X3> : 2 < 1-I Yia>< 1-I Yia>""" < 1-I Yia> 
P(L123) (i,a)~ MI (i,a)EM2 c (i,t~)EMn c 

(A.3) 

where the sum is over partitions of the set L123 defined by 

L12 3 = { ( i , a ) [ i  = 1, 2, and 3, a E K i } (A.4) 

and ~(A)  indicates the set of partitions of the set A. Thus a partition of 
L123 is a family of sets M, such that M~ is a subset of L123, u n = l M p  = Ll2 3 
and the M r are disjoint. The t e r m  <XIX2><X3> is written 

where Ll2 is defined as in (A.4) but i can only take the values 1 and 2. 
Similarly for L 3 i takes only the value 3. 

When the sum in (A.5) is expanded it is a sum of products of 
cumulants and each term in the product again represents a partition of the 
set L12 3. However, ( X I X 2 X 3 >  and <XIX2><X3> differ in that certain 
partitions of L12 3 appear in the sum for the former but not the latter. 
Specifically, any partition (and only those partitions) in which each set M e 
contains either only variables with index (3,a) or only variables with 
indices (1, ct) and (2, ct') will appear in both sums. Thus if sets of the form 
M = { (1 ,a ) , (2 , c t ' ) , (3 ,  a ' ) )  or /~ = ( ( l , a ) , ( 3 , a ' ) )  are in a partition, then 
they will appear in the sum for ( X I X 2 X 3 >  but not for (X1X2>(X3>.  

Consider a partition in which no dement  contains elements from more 
than one of L 1, L 2, and L 3 . This partition will contribute to every term in 
the sum (A.2) and as a result (since it appears thrice with each sign) it will 
cancel. Similarly, partitions in which only L l and L 2 are mixed but  L 3 is 
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kept separate appear once with each sign and therefore cancel (similarly for 
other permutations). 

Consequently, the only terms which survive are those for which at least 
one set of the partition contains elements from all three sets L 1, L 2, and L 3 
(for example, M, defined in the text above). 

The cumulant can therefore be written 

( X I X 2 X 3 ) c  ~" Z \ M l  l \ M n  I ( A . 6 ,  
'(L123) C 

where the prime on P indicates nontrivial partitions of L123, that is, those 
in which at least one subset Mi includes elements from all three subsets L l, 
L 2, and Z 3 . 

We now apply this result to the galaxy calculation. The starting point 
is the first part of Eq. (46): 

0(t  + 1) = (a o ( t  + 1))  = l - I I  [1 - A :B(0 ] (A.7)  
B = I  

In Eq. (46) the expectation is expanded to lowest order in two-site cumu- 
lants. By contrast the general cumulant expansion for a product of several 
independent random variables is 

( g l u 2 "  " " UN ) =  E (U~II  *""  U~lgl~c ~ " ~ (goLpl " " ~ U~pjF) C 
all partitions 

of {1,2 . . . . .  N)  

(A.8) 

(see the appendix of Schulman and Seiden(8)). Thus there are negative 
contributions to (A.7) from three-site cumulants of the form )3 

W= i~=l[1-A~/3,tal~i(t)] ci~__ ([1-A~B:,aB;(t)] ) (A.9) 

where fli, i -- l, 2, 3 are any set of three neighbors of the site a and ,8: are 
the other three sites. There are, of course, additional contributions involv- 
ing squares of three-site cumulants and similar terms, but we shall neglect 
all but first powers of any cumulant involving two or more sites. By 
standard manipulations W becomes 

W --- -/03[ l -/7p(t) ]3(a~,(t)a~,(t)aB,(t))r 

= +?3[1--pp(t)]3([1-a&(t)][l--a&(t)][1--aB3(t)])c (A.10) 

Each of the random variables 1 - aBe(t ) can be expressed as a product over 
the six neighbors of fli at time t - 1 and we get an expression of the form 
(A.1), (A.2). Consequently, by (A.6) we are interested in partitions that 
involve neighbors of all three sites: tim, f12, and f13. We next confine 
ourselves to the same level of precision that was used in deriving Eqs. 
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(49)-(52); that is, in expectations of products of 1 - Aa(t - 1) (the Y's) all 
higher cumulants will be neglected except those arising from a coincidence 
of sites. Specifically, the only nonzero higher cumulants will be those for 
which a site selected as a neighbor of/31 is the same as a site selected as a 
neighbor of/32. Moreover, since "nontrivial partitions" must involve neigh- 
bors of all three sites the only contribution to W will come from products in 
which all three neighbors involve the very same site. 

For ill, f12, and/33 neighbors of a given site a, there is only one site 
which can satisfy the requirements for a nonzero W in this approximation, 
namely, the site a itself. Consequently, 

W =  + p 3 [ 1 - p o ( t ) ] 3 [ 1 - p p ( t - 1 ) ]  15 

• ( [ 1 -  A.,=,_lo~(t- 1 ) 3 [ 1 -  Aflzat_lOa(t- 1)] 
•  - A~.t_lO~(t-  1)])~ (A.11) 

There remain two problems: enumerate the possible subsets (fl],/32, 
/33} giving rise to contributions W, and for each of these to evaluate the 
three-site cumulant appearing in (A.11). 

The enumeration is easy: any three of a's neighbors give such a term 
and all such terms are the same. Thus there are (6 )=  20 such identical 
terms. 

The cumulant itself is given by 

([1 - AB,.t_1%(t - 1)][1 - AB~t_1%(t - 1)][1 - AB~=,_1%(t - 1)])~ 

-~- --/93(0a(t-  l ) o a ( t -  1 ) o ~ ( t -  l ))  c 

= --/93[ (Oa('-- 1) 3) -- 3 ( % ( t -  1)2) (o~(t - 1)) + 2 ( o ~ ( , -  1)) 3 ] 

= - p 3 [ o ( t -  1) -  3 o ( t -  I) 2 + 2 o ( t -  1) 3 ] (A.12) 

2 %. Notice that considerable care must be exer- where we have used % = 
cised in evaluating products inside cumulants and the three identical terms 
% ( t -  1) are treated as distinct until they appear in ordinary expectation 
value brackets. 

Extending the notation of Eqs. (48)-(52) it is convenient to define 

(%(t)o~(t)o,(t))c=- T ("triple") (A.13) 

for a case where ~, 6, and e have a single common neighbor. We have just 
shown that 

T =  + P ' [ 9 - 3 P  2 + 20']  [ 1 - / 9 0 ]  '5 (A.14) 

(where the 0's are evaluated at t - 1 in our approximation, and 

m = __p3[ 1 - /gp( t )  ]3T (1.15) 
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It  is of interest to write down the new iteration equation [analog of Eq. 
(53)] and the new equation for the equilibrium value of p. The iteration 
equation is 

p(t + 1) = 1 - [1 --/Tp(/)] 6- [1 - p p ( t ) ] 4 p 2 ( 1 2 D  + 3 S )  

+ E 1 - pp(0 ] 3 e 3 2 0 : r  (A.16) 

with S and D given by Eqs. (51) and (52) and T given by Eq. (A.14). The 
equilibrium value is found by setting p(t + 1)=  o( t )=  p ( t -  1 ) - p  in 
(A.16). 

The effect of T turns out to be quite small. There is a slight shift in Pc 
gotten from (A.16) by finding that value of p for which a positive solution 
for p appears. For the case of S, D, and T all set to zero we have the 
familiar Pc = 1/6. Keeping S and D but setting T to zero gives Pc = 
0.170467 (the root of 27p 4 - 6p + 1 = 0). By including T also we getpc = 
0.170377 (the root of -20/06 + 2 7 p 4 - 6 p  + 1 = 0). Thus the main shift 
from the lowest mean field value is gotten from D and S with T only 
correcting this shift by about  2%. For this reason in the main text we have 
ignored three-site cumulants. 

Cumulants involving four or more sites can be similarly computed. 
The concept of "nontrivial partitions" is generalized in the obvious way. 
For the galaxy problem any distinct four neighbors of a site a will 
contribute (for the four-site cumulant) and there are ( 6 ) =  15 such terms. 
The effect of such a term will go as p8 (corresponding to p6 for three-site 
cumulants) and may be expected to be of even less importance. 

NOTE ADDED IN PROOF 

Monte Carlo simulations have been used to measure ),, the mean 
cluster size exponent (cf. Blease(l~ We find in 1 + 1 dimensions 7 = 
2.11 + 0.15 and in 2 + 1 dimensions y = 1.50 + 0.10. 
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